

Consulting Software Architect Enterprise software, eCommerce Service-oriented Architecture Participant in developing NIST Smart Grid Framework and Roadmap Leader in collaborative energy Definition and structure for interoperation Venture and startup guidance and technologies

Introduction

- OpenADR from Lawrence Berkeley Labs has significant deployments and mindshare
- The OpenADR approach is key to smart grid interoperability with automated responses designed in
- Energy Interoperation will have the OpenADR 2 profile
- Price and product distribution differs from event distribution
- Using an enterprise approach makes Energy Interoperation more flexible
 - Same interactions and schemas at each level
- Extending Energy Interoperation with IRC business exchanges is producing a broadly useful standard

#GridInterop

Grid-Interop

Managed and Collaborative Energy

- Managed Energy
 - Managed to different goals
 - Scale and control are issues
- Collaborative Energy
 - Choices consistent with business goals
 - Consider markets and requirements
 - Ask versus tell
- Balancing Energy Supply & Demand
- See Cox and Considine, "Smart Loads and Smart Grids— Creating the Smart Grid Business Case," Grid-Interop 2009

Expanded Use Cases Demand Response (curtailment) events Price distribution Quote streams DR signals as option calls Transactive Energy

OASIS Energy Interoperation Goals

- Architectural goals include
 - Clean and consistent information exchange
 - Consistent information exchange patterns
 - To, from, inside, and outside microgrids
 - Apply usage and demand standards
 - NAESB Energy Usage Information
 - Future, Present, Historic demand and usage
 - Projected or committed, real or estimated
- Use NIST-led work—cuts across the entire Smart Grid
 - Common price and product definition (EMIX)
 - Common schedule communication (WS-Calendar)

#GridInterop

Grid-Interop

Key Collaborative Energy Standards

- These standards are in or approaching final status:
 - <u>WS-Calendar</u> allows synchronization and common communication of schedules in a high level business manner
 - Energy Market Information Exchange [EMIX] defines cross-cutting price and product definition communication for the Smart Grid
 - Energy Interoperation defines DR, DER, and usage/ demand projection and measurements and price +product distribution
- All three are defined to, from, within, and outside of microgrids
- All work, interim and final, is publicly visible

Composable Standards

- For scalability
- For independent innovation and evolution
 - With agreed interface contracts
- For simplicity
- For reuse
- See NIST Framework & Roadmap page 48

#GridInterop

DR Interoperation—Composition

- What to compose?
 - Price and Product Definition compose EMIX
 - Schedule compose WS-Calendar
 - Load and Usage compose PAP10 Core Standard
 - Meaning of signals in Energy Interop
 - Means of communicating in Energy Interop
 - Security compose WS-Security and more
 - · Varies for different interactions
 - · Privacy issues
- Where to you compose? Application? Standard?
- Long and short term perspective

Architectural Overview

- Actors are the basis for computation and interoperation
- Actors take on roles
- The terminology of transactive markets
- Business roles—Buyer and Seller
 - Any actor can take on Buyer or Seller role
- Relationship roles—Virtual End and Virtual Top Nodes
 - VTN and VEN (See EPRI White Paper)
- Services, not APIs
 - Consistent with SOA approach

#GridInterop

Grid-Interop

Virtual Top and End Nodes

- A VEN has exactly one VTN in a given relationship
 - Energy Interoperation defines relationships as *MarketContexts* (mostly a URI)
- A VTN has one or more VENs in a given relationship

Same Services, Same Patterns

- In each example the service operations flow across the VTN-VEN edge
- In each example, some Parties have multiple relationships
- Any actor can be a buyer or a seller

#GridInterop

Grid-Interop

Issues in Energy Interoperation (1)

- Issues from the last part of the standardization included
 - Resources, assets, and looking "inside the VEN"
 - Business issue: dangerous, and adds complexity to look beyond the VEN interface
 - Registration and its meaning for wholesale and retail
 - Adopted abstract registration/enrollment service
 - Price as a multiplier or adder to base prices
 - · Both are defined
 - Requested response level communication
 - Report mechanism addresses DR, Regulation, projection, more

Issues in Energy Interoperation (2)

- (continued)
 - Addressing all IRC requirements
 - Application support for OpenADR Simple Clients for faster uptake
 - Structured for both pull and push patterns
- Historical and Current Issues are tracked at http://tools.oasis-open.org/issues/browse/ENERGYINTEROP

#GridInterop

Grid-Interop

Conclusions

- OASIS Energy Interoperation is the place where OpenADR, IRC, and other requirements are addressed
- The architectural approach covers many use cases, far beyond "utility-customer"
- OpenADR functionality is defined as a profile on Energy Interoperation
 - Used as context for OpenADR Alliance profiles
- Using NIST-identified Smart Grid cross cutting standards will improve interoperation
- One freely-available standard addresses interoperation
 - Between pairs of smart/microgrid actors
 - Transactive energy and operation