

Energy Ecologies

William Cox

Cox Software Architects LLC wtcox@CoxSoftwareArchitects.com

Toby Considine

TC9 Incorporated toby.considine@gmail.com

Introduction

- William Cox
 - Principal, Cox Software Architects LLC
 - Consulting Software Architect
 - Specializing in Smart Grid architecture and information definitions
- Toby Considine
 - Principal, TC9, Inc (www.tcnine.com)
 - Strategic Technology Consulting
 - Enterprise integration of Smart Buildings and Smart Energy

What Are Energy Ecologies?

- Ecology from Greek:
 - οἶκος, "house"; -λογία, "study of"
- · Economics from Greek:
 - οἰκονομία (oikonomia, "management of a household, administration")
- Energy Ecologies: The study of the economic interchange, conversion, and management of energies within a facility or microgrid

At the Node

- Each available input
 - Has a price and product definition (including time)
 - May have EMIX source warrants
- Each possible output
 - Has a price and product definition (including time)
 - May have EMIX source warrants

Grid-Interop Driving to Grid 2020

Example: Dual Fuel Boiler

- A dual-fuel boiler can use multiple sources
 - For example Natural Gas and Electricity
- Cost of input may be mitigated by cost of output
 - E.g. Steffes paper, Grid-Interop 2011

Example: Storage

- · Storage can take many forms
 - Time-delayed output, bounded storage
 - Energy embodied in finished product
 - E.g. aluminum embodies large energy costs of production
 - Energy embodied in intermediate product
 - E.g. forged blanks for further machining
- Involves delayed flows
 - Petrie nets or similar techniques may be more intuitive

Grid-Interop

Complexity and Other Issues

- The graph of nodes, input and output links is sparse
- Input costs are less simple than shown
- Input costs, hence output costs
 - Are time-varying
 - May have thresholds where costs change
- Imputing of capital and (internal) distribution costs is difficult
- Flow rates will vary
- Constraints on flows and storage require models

Benefits

- Robust and resilient systems can discover alternate sources for specific inputs
- Common framework for cost
 - Using matrix algebra
 - Many input costs are consistent across a facility
- Simple conceptual model for use of diverse energy sources
- Simple conceptual model for outputs

