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Abstract 

We want to answer questions about device behavior in the 
context of indications or actual forward prices (for future 
time intervals). We demonstrate how existing market 
information can effectively address variability in forward 
prices. 

Demand optimization will be crucial as we move forward. 
To this end, we need to enable suitable pricing price-
responsive end nodes1, along with pricing mechanisms and 
market structures to enable robust demand optimization. 

In this paper we describe and model a device that takes 
available price information and makes choices about time of 
dispatch, and address a range of issues related to how the 
models respond to various prices.  We validate the model 
and present results from simulation runs using one year of 
real time and day-ahead market clearing prices from one 
North American Independent System Operator (ISO-NE). 

Regulation in the United States at the retail level is typically 
statewide, with each state having its own policies. The 
responsiveness of a device should be independent of such 
statewide discrepancies, and must respond only based on the 
configuration parameters set by the consumer. This ensures 
widespread portability and statewide interoperability. 

                                                
1 We use the terms end node, device, and facility 
interchangeably in this paper. The technical abstraction is 
the OASIS Energy Interoperation (OASIS, 2012)Virtual 
End Node or VEN. 

Future work includes how to make decisions balancing the 
risk of up-to-the-minute purchases compared to premiums 
for forward purchases, validation of these techniques across 
other market environments, use of forward indicative prices, 
and time as a facet of the analysis. 

1.  INTRODUCTION 
We build a framework for quantitative evaluation of 
forward price knowledge and device/node behavior to 
further the goal of understanding and building price-
responsive devices so devices can engage in transactive 
operation using markets or using prices set by others, 

In a previous paper (Sastry, Cox, & Considine, Price 
Normalization, 2011) we defined formal models and 
examined abstractions of price, which were focused on 
looking backward at recent price history. In this paper we 
build on our price-responsive node (or device) model and 
create quantitative models for device behavior with future 
price knowledge. 

We already know a number of things about electricity and 
energy prices—they have a diurnal, often bimodal, and 
seasonal patterns ( (Dept of Energy, 2008) on peak 
definition)—but what if we could know future prices? How 
would devices take advantage of the knowledge? How can 
we quantify decisions we might make? What’s the best we 
can do with that information? Can we do reasonably well 
with what we have, or are new price streams and/or markets 
needed? 

To that end, our framework contributes to determining the 
economic value of 

• Different kinds of forward price information 

• Different time extent of future knowledge 
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• Application of that knowledge to future prices 

• Algorithms to take advantage of forward price 
knowledge 

 

2.  PRICES, RESPONSE, AND ACTIONABLE 
INFORMATION 

First we must talk about price, price streams, and response. 

2.1.1.  Semantics of Price 
Another paper (Sastry, Cox, & Considine, Semantics of 
Price, 2012) includes a more complete discussion of the 
semantics of price. In this paper, we avoid consideration of 
the economic reality of prices to which a price-responsive 
node (or device) responds, except to use those prices in 
evaluating performance. 

The key semantic terms we use are transactable and non-
transactable, meaning respectively that a device may buy 
energy at the stated price (transactable) or may not. 

The latter are sometimes called indicative prices, but 
without a connection to the economic reality of the node’s 
environment, the actionability of indicative prices is 
questionable. 

We will assume that there is an economic consequence for 
accepting or not accepting a price, and that a delay in 
execution that requires energy will take the price for the 
time of consumption. 

2.2.  Price-Responsive Nodes 
The figure of merit for responsive devices is total price paid. 
This also allows comparison to a baseline set of prices. If 
the set is contiguous, and the time intervals are the same 
size, we call this a price stream).  

We will assume that a price stream is available to the node, 
and that the node will make a choice: 

(a) Run now 

(b) Run later, and determine how much later 

Following the model of (Sastry, Cox, & Considine, Price 
Normalization, 2011), we build a framework to model 
behavior of an energy-consuming device, a device that uses 
one unit of energy for one time interval in the stream. The 
results may then be applied to devices with varying energy 
use and run schedules. 

2.2.1.  End Nodes, Facilities,  Devices,  and Virtual 
End Nodes 

Following the terminology of Energy Interoperation 1.0 
(OASIS, 2012), we look at pairwise relationships. For 
demand response [OpenADR], we name the initiator of an 

event the Virtual Top Node (VEN) and the recipients 
Virtual End Nodes.  

While market and transactive operations do not necessarily 
use the same interaction graph that would be used for 
demand response, calling the recipients of prices (whether 
they be the result of market operations, operations in which 
the node might or might not participate) Nodes or Virtual 
End Nodes is reasonably consistent with the Energy 
Interoperation standard terminology.2 

A price and product definition has meaning in a specific 
Market Context as defined in Energy Interoperation and 
Energy Market Information Exchange  (OASIS, 2012) 

 

2.2.2.  Actionable Information 
To be useful, information must provide information to guide 
actions. We call this actionable information. 

The actions in our model are as stated in Section2.2. There 
is a measurable value to not acting when (e.g.) prices are 
high, and to acting when (e.g.) prices are low. We will not 
consider other costs such as the cost for delay, only the 
value of delaying to obtain better prices. 

2.2.3.  Node Details  
Factoring out quantities and units, both of energy and time, 
we describe a price-responsive node as one that changes its 
behavior when prices differ. 

Our framework could be applied to demand markets and 
prices, but in this paper we use only energy markets and 
prices. 

As stated, device uses a single unit of energy for one time 
period; the time period is the basic interval size for the price 
stream. 

2.3.  Look Forward, Look Back 
We will describe pseudocode (Wikipedia) for a price-
responsive device. The device will analyze information, 
perhaps looking forward, back, or both, in a price stream 
(see Figure 1 below) relevant to its business, and apply its 
business information, requirements, and goals in deciding 
what action to take. 

                                                
2 The actors that interact with markets are called Parties and 
likewise the recipient of price information is also called a 
Party. 
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Figure 1. Price Stream Consisting of Historical, Real-Time, 

and Future prices 

The retrospective analysis described in (Sastry, Cox, & 
Considine, Price Normalization, 2011) included abstractions 
of past prices into simple levels; those were designed used 
to determine whether a current price is high, low, or at some 
intermediate state. 

Levels may be interpreted as nominal prices, though 
disconnected from actual costs, and that the same node 
algorithms could use an abstracted price stream.3 

Past information is, in essence, not transactable, as the time 
and circumstances have passed. There are, however 
significant markets (called forward markets) that allow 
transactions or allow a viewer to understand future prices. 

2.4.  Discussion 
Knowledge of the future makes the results of actions more 
predictable. As such, forward price knowledge is a big step 
toward efficiently operating to minimize energy cost. 

We look only at energy costs, not at other costs that may be 
included in an electric bill. Since the energy costs are 
variable and a primary determinant of total cost, we do not 
need that refinement for this discussion. 

3.  TERMINOLOGY 
In this section we summarize the terminology we have 
already introduced.  Need the rest.  

3.1.  Abstractions and Nominal Prices 
Common approaches to conveying prices involve their 
abstractions such as a set of levels, where each level 
corresponds to a range of prices. However, in [Sastry, Cox, 
Considine, Grid-Interop 2011], we argue that such 
abstractions lead to inconsistent device behavior, and is 
fraught with lack of interoperability. We further argue that 
actual (nominal) prices must be conveyed in a standardized 
and consistent manner. 

                                                
3 For useful behavior, the actual price should be available; 
hence we use actual prices even though they may not be the 
prices that the end node actually pays. 

3.2.  Locational Marginal Price 
A Locational Marginal Price (LMP) is a price for a 
particular time interval at a specific location. There may be 
hundreds of nodes in a market operator’s territory, and 
thousands addressed in multi-market forward exchanges. 

 

3.3.  Time Series—Streams 
Price streams are a specific example of the streams formally 
defined elsewhere [ Energy Interoperation] as extensions to 
iCalendar [iCalendar], which itself is the basis of nearly all 
personal calendars and scheduling. 

Mathematically, a stream resembles a time series of data; 
there are many statistical tools that may be applied to time 
series [The R Project for Statistical Computing]. 

3.3.1.  Substitution of Streams 
For our discussion it is irrelevant to the node precisely what 
the source of a price stream is; the behavior is similar, and 
the application to forward or present-time prices is explicitly 
stated in an Energy Interoperation/EMIX stream []. 

The figure below (Figure 2 from [Sastry, Cox, Considine, 
Grid-Interop 2012]) shows the separation between an end 
node and source of a price stream. 

 
Figure 2. Price Stream to a VEN 

In Figure 2, Node A (a VEN, facility, or device) receives a 
price stream from one or more sources (we show one 
source, B). The blue lines indicate interfaces to the VEN 
and price source. C labels interoperation between end nodes 
and price source. 

3.3.2.  Two Streams 
We use two price streams, both from the New England 
Independent System Operator (ISO-NE). 
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The streams use one-hour intervals, and give a price that 
applies to each interval. The prices in the streams are 
clearing prices in two different markets maintained by ISO-
NE and obtained from their historical data. They are 

(1) The Day Ahead market (DA) 

(2) The Real Time (or same-day) market (RT) 

These are published and available going back several years. 
We selected July 1, 2010 through July 31, as we have 
additional data sets that cover that time with abstractions of 
price (Sastry, Cox, & Considine, Price Normalization, 2011) 
at different but compatible granularity for that time period 
(see Future Work) 

For this discussion it suffices to know that the DA market 
clears for a given date at 5pm the day before; the real time 
markets clear close to the start time of the five-minute 
interval referenced. 

4.  THE DATA SETS AND CHANGES 
The source is (ISO-NE, 2012). Much information irrelevant 
to our purpose is in those files. Note that the prices are not 
transactable, as they reflect market clearing, and as recorded 
are preliminary, not final settlement prices.  

First, we restrict ourselves to only considering a single 
[ISO-NE] Zone, SEMASS for Southeast Massachusetts.  

The prices are only indirectly related to end node prices, and 
are expressed in dollars per megawatt-hour. 

To line up with another data set we used we restricted the 
dates from July 1, 2010 through July 31, 2011. 

We used the 2010_smd_hourly and 2011_smd_hourly 
datasets, and performed the following adjustments and 
restrictions: 

• Hourly was the only granularity real-time data 
available.  

• Date was changed to a single date & time format 
rather than separate day/hour 

• Only rows for Zone 4006 Z.SEMASS were used 
(restricting to one Zone LMP) 

• We retained the Day-Ahead Locational Marginal 
Price and Real-Time LMP  

• All sub-components of the LMP were discarded; 
the Energy Component is nearly all of the LMP, so 
we used the LMP. 

• The data for hour 2 of March 13, 2011 (the omitted 
hour for daylight savings time) was replaced with 
the average of the values immediately before and 
immediately after. 

The information was approximately 9,500 records in each 
data set plus extras retained at the end to simplify look-
ahead computations. 

Analysis was done with Microsoft Excel and the R Statistics 
Package (R Statistical Package, 2012). 

5.  THE BENCHMARK AND THE 
EXPERIMENTS 

5.1.  Knowledge of the Future 
We want to establish economic, quantitative value for 
various forms of forward price information, as well as a 
framework in which to evaluate various node management 
algorithms. 

We are using only forward prices, with varying degrees of 
consideration of future prices. 

5.2.  Horizon 
We define the term horizon to mean how many price stream 
intervals in the future we will consider, as shown in Figure 3 

 
Figure 3. Price Stream Intervals 

The Horizon is how far forward prices will be considered, 
including the current time interval. Assume we are at the 
time interval 1. A horizon of 1 is just the current interval. A 
horizon of 4 considers the prices for intervals 1 through 4; a 
horizon of 8 considers intervals 1 through 8, and so forth. 

5.3.  Benchmark for a Horizon 
We define a means of determining optimal behavior. This 
parallels the development of Belady’s A lgorithm (Belady, 
1966)  for disk head scheduling, where complete knowledge 
of the incoming requests is available. For the benchmark we 
assume perfect knowledge of near-term forward prices. 

Adapting Aho’s description (Aho, Denning, & Ullman, 
1971) of Belady’s algorithm, we assume we know the 
forward price stream 

𝑃𝑟𝑖𝑐𝑒 𝑆𝑡𝑟𝑒𝑎𝑚 𝑃 = 𝑝!! , 𝑝!! , ⋯ … 

We formally define the horizon to be the maximum value of 
𝑖 that applies to time t. 

We define the benchmark price ℬ!! for a time t  and a 
horizon h as follows:  

ℬ!!  =  Minimum(𝑝!, 𝑝!,,⋯ 𝑝!) 

In other words, the benchmark price is the lowest price 
within the horizon. 

1 2 3 4 5 6 7 8 9 … 
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In the rest of this paper we choose the first such block if 
there are ties. This addresses the common case where 
known future prices are determined (e.g.) by time of use; 
this gives a bias to the earlier, and reduced computed delays 
in our models. In dynamic price streams we would expect 
that ties will be rare. 

For prices in a horizon, we often use the offset: 

𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑓𝑖𝑟𝑠𝑡 𝑖  ∋  𝑝! =  ℬ!! 

We will use this to select the correct prices in Section6.3. 

6.  EXPERIMENTS 
We carried out three experiments detailed in the following 
sections with results and discussion. 

The three experiments are 

1. RT—Real-time (hourly) prices are used. The 
benchmark price is computed for each time interval 

2. DA—Day-ahead (hourly) prices are used. This 
forward market clears typically at 5pm the day 
before the time intervals for which prices are 
determined. 

3. DAselRT—Day-ahead prices are used to determine 
the interval to use; the RT prices are then used to 
compute the price actually paid. 

In the following sections we describe each experiment, and 
display and discuss the results. 

6.1.  RT: Benchmark Prices for the RT Data 

6.1.1.  Description 
We define device behavior with the following pseudo-code: 

Loop 

Consider all prices from the interval just starting to 
the event horizon 

Select the lowest price 

Delay until the interval associated with the first 
occurrence of the lowest price 

Repeat 

We look at the optimal choice for each interval in the data 
set, extending the data values two days past the end to allow 
for additional horizon values to be assessed. 

A Benchmark takes two parameters: the data set with its 
associated product type, and the horizon. 

Evaluate the mean, standard deviation, maximum, and 
minimum for each horizon in 1, 2, 4, 8, and 16. 

6.1.2.  Results 
The results are presented in the graph and table below.  

 

 
 

 

Horizon RT Mean 

1 51.0 

2 47.4 

4 43.6 

8 39.3 

16 35.0 

6.1.3.  Discussion 
As one would expect, the mean price to be paid decreased 
with larger horizon values. The curve is very nearly a 
section of a parabola; when plotted with logarithmic X-axis 
the curve is nearly a straight line. 

The mean for Horizon 1 is exactly that for simply taking the 
price in the interval which one considers first. The 
maximum benefit in this graph is at horizon 16, and gives 
around 31% benefit over taking the current price without 
delayed operation. 

6.2.  Experiment 2: Benchmark Prices for the DA 
Data 

6.2.1.  Description 
We ran a similar experiment for the Day-Ahead market. 

30 

35 

40 

45 

50 

55 

‐4  1  6  11  16 

Real Time Prices with 
Forward Horizon 

RT 
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The semantics of the market provide that prices for today 
were determined in the market yesterday (typical closing 
time is 5pm the day before). 

The information is therefore, with a 5pm closing, available 
for between 7 and 31 hours ahead depending on the hour of 
the day that we consider interval 1. 

6.2.2.  Results 
The results are presented in the graph and table below. We 
include the RT series for comparison. 

 
 

Horizon DA Mean 

1 50.7 

2 48.8 

4 45.8 

8 41.6 

16 36.8 

 

6.2.3.  Discussion 
The DA curve is completely above the RT curve except at 
horizon 1. 

The RT curve takes into account unforeseen (at least not 
foreseen the day before) contingencies, unplanned 
congestion, and so forth, all of which have the effect of 
making the RT stream more volatile (the sample standard 
deviation for RT at horizon 1 is 27.8; for DA it’s 22.6). 

However the contingencies are relatively infrequent, and the 
excursions above and below the mean are more extreme, so 
more advantage can be taken of the volatility. 

6.3.  Experiment 3: Benchmark Prices using DA 
to Determine RT Price Applied 

6.3.1.  Description 
This is our first experiment to quantify the value of forward 
information from a less reliable source than the benchmarks 
We are motivated in part by the recent decision of ERCOT 
to provide some actionable forward prices to DR providers 
through what they refer to as an "Hour Ahead Market" 
(HAM). The HAM is a new market which will be installed 
between the DAM and the RTM [ (ERCOT, 2012)]. 

We combine information from the DA and RT datasets as 
follows: 

For a given time Ti determine the offset from the current 
time to the interval with the lowest Day-Ahead price. 

Then for that interval, we utilize the current Real-Time price 
for that interval as the actionable information. 

This mimics using readily available Day-Ahead information 
to determine how much delay is appropriate. Forward real-
time price information may be much more difficult to 
determine and less reliable even if it were; the Day-Ahead 
clearing prices are easy to use. 

The question we want to answer is “how well can I predict 
the future using yesterday’s day-ahead markets?” 

 

6.3.2.  Results 
The results are presented in the graph and table below.  

 

30 

35 

40 

45 

50 

55 

‐4  1  6  11  16 

RT 

DA 

30 

35 

40 

45 

50 

55 

‐4  1  6  11  16 

RT 

DA 

RTselDA 



 Sastry, Cox, and Considine 

Grid-Interop Forum 2012 Draft  7 

Horizon RTselDA 
Mean 

1 51.0 
 

2 49.2 

4 46.4 

8 42.3 

16 38.2 

6.3.3.  Discussion 
The value for horizon 1 is clearly the same as that for RT. 

One interesting fact is that the mean for RT with horizon=4 
is only slightly above the mean for either DA or RTselDA at 
horizon=8. 

This tells us that in terms of average price paid, the mean 
cost for horizon=8 for DA and RTselDA are both greater 
than the mean cost for horizon=4 for RT. 

This suggests that if forward real-time market information is 
not available, or is not very reliable (see Future Work 
below), then a reasonable substitute are the Day-Ahead 
prices. 

Recall that the Day-Ahead prices have a 7 to 31 hour 
advance timeframe, so in effect the mean amount paid at 
h=7 is higher than the mean at higher horizons. 

We can conclude that Day-Ahead clearing prices at h=8 or 
greater provide a better mean amount paid than accurate 
h=4 for Real-Time prices. 

6.4.  Consider Expected Delay and Second 
Moments 

We did not directly show the standard deviations for the 
means in the previous sections. The graph below shows the 
differences in the standard deviations with the same color 
code as in the other graphs. (In the final version of the 
paper, we present a more detailed analysis including graphs 
for standard deviations). 

 
As we mentioned above, the variation in the RT set is higher 
than in the DA for horizons up to 2. The variation for the 
third set (RTselDA) is higher than either of the others. 

The increased variation is somewhat troublesome, as it 
increases the risk. 

7.  FUTURE WORK 
In this section we briefly mention possible future work 
based on the ideas and implementations of the ideas in this 
paper. 

7.1.  Facets—Time of Day 
Questions to consider include 

Does the range of times affect the value? For example, 
appliances may primarily delay during the time from going 
to work until returning home, and from going to bed to 
arising. What are the implications from time-related patterns 
and facets? 

7.2.  Different Stream Intervals 
It may be that running the same tools and simulated 
algorithms on five-minute data will produce different 
results, possibly due to the included time being shorter.  

While there are efforts to prove the self-similarity of energy 
use (see e.g. [Leland, IEEE Comm Soc] for self-similarity 
of communication traffic) , this is an open area that we may 
investigate at stream intervals that are currently provided. 

7.3.  Different Markets and Conditions 
Applying the same analytic tools to price streams in other 
markets and at different times would be straightforward. 
Validate across a larger set of markets, times, and weather 
conditions. 

10.0 

15.0 

20.0 

25.0 

30.0 
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7.4.  Indicative Prices 
Information on forward prices may be reduced from full 
knowledge. One way people have described this (Centolella, 
2012) is to obtain indicative prices.  

These might have sources such as interim simulated 
attempts at market clearing in advance of deadlines, or 
estimation of future direction. 

How do the model and its outputs respond to partial 
information? Directional information is clearly useful with 
horizon=2, as the choice to run now or delay an hour is 
guided clearly. 

But how accurate would the directional indications be? The 
model and framework would allow testing indications just 
as well as testing already-know (but “future” to the point 
analyzed) prices. 

It would be interesting to compare the cost of creating and 
distributing indicative prices with the cost of using the day-
ahead information as in RTselDA.  

7.5.  Balancing Risk and Costs of Purchases 
Estimates of risk can be computed from the sampling and 
statistical techniques we have used. Consider how to apply 
those estimates to the buy ahead (usually at a price 
premium) versus buy at time of use. 

8.  SUMMARY AND CONCLUSIONS 
We have demonstrated that there is value to be gained from 
forward price information, and have quantified that value. 

We have graphically shown how to exploit forward price 
information and the value of that exploitation. 

We have discussed how to extend and apply the work to 
address related problems in price-response. 

By exercising our framework and the relevant horizon 
determination, we have shown a simple way to determine 
the first and second moments of the means for two different 
price streams and two different algorithms.  

The framework in its current form easily computes the 
output values for any time series. 

In the final version of the paper, we will show additional 
graphs  with error envelopes. We are also working on an R 
function to do the computation direction, parameterized by 
horizon values. 

This framework for quantitative analysis allows testing of 
algorithms and forward price information prior to large-
scale deployment, and should serve as a price, product, and 
algorithm design tool. 

8.1.  Implications 
We have demonstrated that transactable prices delivered 
using existing standards provide an actionable basis for 
optimizing energy purchases. Assumptions about the nature 
and volatility of the local power market can be reduced to 
reasonably simple and reasonably useful predictive 
algorithms. The particular assumptions are inherently local, 
and are outside the scope of this paper. 

Different Virtual End Nodes will place different values on 
aspects of the market, and the value of price and availability 
arbitrage against that market. Because of the cleanliness of 
the model, it should be easy to develop applications, even 
on resource-constrained embedded  devices.  

This approach removes objections to participation in 
transactive markets by devices, even very small devices. 
Such participation could provide a path from todays large, 
ordered markets to radically different power markets, even 
microgrids, in the future.   

In such markets, distributed power sources, even 
intermittent power sources such as local photovoltaic (PV) 
or Wind, can bring their product to bear in device oriented 
local markets. 
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Northwest National Laboratory (PNNL), Richland, WA 
managed and operated by Battelle. He was responsible for 
providing R&D, business development, and technical 
marketing leadership in various thrust areas including 
advanced smart grid enabled demand management to 
provide value-add services to residential and small 
commercial building customers, transmission/distribution 
modeling & simulation, and smart grid data analytics.   

Prior to joining Battelle/PNNL, Ram was a Project Manager 
and Senior Research Scientist with Siemens Corporate 
Research (SCR), Princeton, NJ. One of the highlights of his 
tenure at SCR was an R&D program he was responsible for 
to enhance the product portfolio of various Siemens 
businesses (smart homes, remote health care, industrial 
automation etc) based on radio frequency identification 
(RFID), wireless sensor networks, and embedded machine-
to-machine technologies. 

He has published several papers in refereed journal and 
conference proceedings, and has been a plenary speaker at 
well-known conferences including Connectivity Week, 
Grid-Interop etc. He also has several patents against his 
name, and a number of provisional patent and patent 
applications under consideration. 

Ram has a B.S. degree in electrical engineering from Indian 
Institute of Technology, Chennai, India M.S. /Ph.D. degrees 
in electrical engineering and an M.A. degree in Mathematics 
from University of Pittsburgh. 

William Cox 

W illiam Cox is a leader in commercial and open source 
software definition, specification, design, and development. 

He is active in the NIST Smart Grid Interoperability Panel 
and related activities. He contributed to the NIST conceptual 
model, architectural guidelines, and the NIST Framework 
1.0. 

Bill is co-chair of the OASIS Energy Interoperation and 
Energy Market Information Exchange Technical 
Committees, past Chair of the OASIS Technical Advisory 
Board, a member of the Smart Grid Architecture 
Committee, and of the WS-Calendar Technical Committee. 

Bill has developed enterprise product architectures for Bell 
Labs, Unix System Labs, Novell, and BEA, and has done 
related standards work in OASIS, ebXML, the Java 
Community Process, Object Management Group, and the 
IEEE, typically working the boundaries between technology 
and business requirements. 
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He earned a Ph.D. and M.S. in Computer Sciences from the 
University of Wisconsin-Madison. 

Toby Considine 

Toby Considine is a recognized thought leader in applying 
IT to energy, physical security, and emergency response. He 
is a frequent conference speaker and provides advice to 
companies and consortia on new business models and 
integration strategies. 

Toby has been integrating building systems and business 
processes for longer than he cares to confess. He has 
supported and managed interfaces to and between buildings, 
cogeneration plants, substations, chilled water plants, and 
steam and electrical distribution. This work led to Toby’s 
focus on standards-based enterprise interaction with the 
engineered systems in buildings, and to his work in the 
Organization for the Advancement of Structured 
Information Standards (OASIS).  

Toby is chair of the OASIS oBIX Technical Committee, a 
web services standard for interface between building 
systems and e-business, and of the OASIS WS-Calendar 
Technical Committee. He is editor of the OASIS Energy 
Interoperation and Energy Market Information Exchange 
(EMIX) Technical Committees and a former co-Chair of the 
OASIS Technical Advisory Board.  

Toby has been leading national smart grid activities since 
delivering the plenary report on business and policy at the 
DOE GridWise Constitutional Convention in 2005. He is a 
member of the SGIP Smart Grid Architecture Committee, 
and is active in several of the NIST Smart Grid Domain 
Expert Workgroups. 

Before coming to UNC, Mr. Considine developed enterprise 
systems for technology companies, apparel companies, 
manufacturing plants, architectural firms, and media 
companies old and new. Before that, Toby worked in 
pharmaceutical research following undergraduate work in 
developmental neuropharmacology at UNC. 

 

 


