Structured Energy: Microgrids and Autonomous Transactive Operation

William Cox, PhD
Cox Software Architects LLC
Toby Considine
TC 9, Inc

About William Cox

- Principal, Cox Software Architects LLC
- Consulting Software Architect
 - Complex systems, Service-Oriented Architectures, eBusiness/eGovernment, due diligence, ...
 - Leader in NIST Smart Grid Framework & Roadmap
 - Member SGIP Smart Grid Architecture Committee
- Specializing in Collaborative Energy, Smart Grid architecture, interoperation, and information definition

About Toby Considine

- President, TC9 Inc
- Strategic Technology consulting
 - Information and interaction standards for building design, operation, energy use (oBIX)
 - Strategic Technology Consulting in emerging markets and Venture Formation

VICEE

Outline

• Conclusions and Reference

IEEE

Introduction

- How do we assemble larger microgrids from smaller? Or decompose larger into smaller?
- What is a well-behaved microgrid?
- How do we collaborate across microgrids?
- We describe formal terminology for union and intersection and how to expand or narrow collaboration accordingly

Managed and Collaborative Energy

- Balance supply and demand
 - Managed Energy
 - Managed to different goals
 - Scale and control are issues
 - Collaborative Energy—ask versus tell
 - Choices consistent with business goals
 - Consider markets and requirements
- More information
 - Smart Loads and Smart Grids—Creating the
 Smart Grid Business Case, Grid-Interop 2009

Microgrids (1)

- Microgrids [Galvin]
 - "[Microgrids] achieve specific local goals, such as reliability, carbon emission reduction, diversification of energy sources, and cost reduction, established by the community being served."
 - "[S]mart microgrids generate, distribute, and regulate the flow of electricity to consumers, but do so locally."
- Microgrids can be considered to be selfmanaged

Self-management Is Key

- Consider a Microgrid as an abstract object with information and operations, some private
 - Provide an interface to the outside
 - Private operations to the inside
- Struggle over knowledge and control

Microgrids (2)

- A microgrid is a group of devices with selfmanagement, and optionally
 - Storage,
 - Generation, and
 - Consumption of energy
- At least one is required
 - We describe the last two as "generation-only" and "consumption-only" microgrids

Microgrids (3)

- "Local" is a flexible term
 - The critical question is "is the node self-managed"
- "Micro" is a flexible term
 - Some use the term "nanogrids" for small microgrids
 - Commonality of interest and location is more important than mere size
 - How big is no longer "micro"?
 - These definitions work for "the big grid" as well

Structured Energy: Relationships

- Microgrid relationships: recursive definition
- A microgrid is an aggregation of one or more microgrids which provides energy switching, transportation, and management across its constituent microgrids
- This creates a hierarchical structure where the edges are from a microgrid to its constituent microgrids

Information within a Microgrid

- Information within a microgrid comes from
 - Other components
 - Aggregated or summarized by contained microgrid management
 - Markets (specific to the microgrid or external) for information sharing and coordination
 - Transactive energy, price-takers, semantics of price
 - Microgrids are the building block
 - <u>Understanding Microgrids as the Essential Architecture of Smart Energy</u>

A Semi-Group Under Union

- Take M to be a set of microgrids
 - Define a binary operation, union, that results in a microgrid
 - · A union of two microgrids is itself a microgrid
 - The operation is associative
 - This meets the definition of an associative magma, or semigroup

A Topology of Microgrids

- Consider the intersection of microgrids
 - To demonstrate a formal [open set] topology, we need to determine that finite intersection maps to the set
- A microgrid may participate in more than one higher level microgrid
 - Structure can be described geographically
 - DR events standardized to affect a feeder service area or a city/region
- Subset of a microgrid can be managed within, and coordinated with other components

What Do We Gain?

- · A combination of microgrids is itself a microgrid
- Joining my office park's microgrid M1 with that of a nearby industrial park M2 creates a new microgrid M3
- Self-management of M3 needs to take place
 - Coordination of behavior, inputs, and outputs supports self-management
- 2 or 3 microgrids?
- How do we coordinate?

Well-behaved Grids...

- Provide better behavior to the Microgrids in which they participate
- Energy flows can be net, not separate
 - Regulation often distorts the electrical reality typically in the name of incentives
- MicroMarkets scoped to each microgrid
- Combine microgrids by spanning markets and response

Structured Energy: Collaboration (1)

- Collaborative energy interfaces and information exchanges with minimal information of the other side
- Transactive interactions to define local markets
- Use the terminology of markets and business
- Avoid the "knowledge problem" of more centralized management

Structured Energy: Collaboration (2)

- Managed energy issues
 - Does the controller understand the business needs of the constituent parts or the other microgrid?
 - Number of devices/microgrids can be very large
- Lessons from multi-tier applications in eBusiness and the Internet
 - Hierarchical structures reduce complexity and performance bottlenecks
 - Simper structures more easily used and realigned to changing business needs

Structured Energy: Collaboration (3)

- Collaborative energy is the way to succeed
- View the constituents as independent entities who have agreed to collaborate
- Use open standards to connect and define markets and information exchanges
- Use Service-Oriented Architecture (SOA) to request service

What About Smart Microgrids?

- Smart Loads improve business value
 - Cox & Considine, Creating the Smart Grid Business
 Case, Grid-Interop 2009
- Aggregation of fluctuating and partially balanced supply and demand has value
- Cross-microgrid interactions can be limited
- Higher level microgrids coordinate more smooth demand and generation shapes

Conclusions

- Microgrids form a topology over their components
- · A model and tools for
 - · Assembling microgrids
 - · Disassembling microgrids
- Structured Energy permits taking advantage of smoother and better managed loads
 - Reduction in complexity of from managed to collaborative approaches
 - Simplified collaboration and management

References (1)

- Price and Product Definition
 - OASIS Energy Market Information Exchange (EMIX)
- Services and interaction
 - OASIS Energy Interoperation
 - OpenADR2 Profiles of Energy Interoperation
- Schedule
 - WS-Calendar extensions to iCalendar
 - PIM (abstract model) for WS-Calendar in progress

References (2)

- Selected papers (most are linked from <u>here</u>)
 - <u>Automated Transactive Energy</u> (Cazalet Grid-Interop 2011)
 - Energy, Micromarkets, and Microgrids (Cox Grid-Interop 2011)
 - Applying Energy Interoperation and EMIX to DR and Transactive Energy (slides) (Holmberg Grid-Interop 2012)

References (3)

- Energy Ecologies (Cox, Considine, Grid-Interop 2012)
- Understanding Microgrids as the Essential <u>Architecture of Smart Energy</u> (Considine, Cox, Cazalet, Grid-Interop 2012 Best Paper)

