Implementing Interoperable Transactive Energy with NIST Project/SGIP Standards

William Cox, PhD
Cox Software Architects LLC

About William Cox

- Principal, Cox Software Architects LLC
- Consulting Software Architect
 - Complex systems, eCommerce, due diligence, ...
- Specializing in Smart Grid architecture and information definitions

Outline

- NIST Framework and Roadmap
- Transactive Energy Semantics and Dimensions
- Business Goals
- End-to-end from pairwise relationships
- Implementing Transactive Energy
- Standards for Transactive Energy
- Energy Ecologies and Natural Gas
- Conclusions and References

NIST Framework and Roadmap

- Support for Transactive Energy
 - Standards from the Priority Action Plans
 - Common interoperable information models
- Cross-cutting model for price and product definition (<u>PAPO3</u>)
- Cross-cutting schedule communication (PAP04)
- DR and DER interactions (PAPO9)
 - Included transactive interfaces based on PAP03

Transactive Energy & Price Semantics

- From Nominal to Real transactive prices
 - Nominal or fiat prices
 - Someone else's price
 - Related to price I pay
 - My price
 - My price that I have chosen transactively (product, time, price)

Semantic Questions about Price **Dimension** Question Transactable prices Can I buy or sell? What do I pay? Actual prices Fiat prices Who made the prices up and why? Actionable Is action appropriate using the price? Historic/Present/Future? Time Indicative Is the abstracted information on direction only? Certainty How certain is the price? Real? Can I compute economic value with this price or is it abstracted? Source: Sastry, Cox, Considine, *The Semantics of Price...*, Grid-Interop 2012

Transaction Types

- From price-taker to participant in current/ forward transactions
 - Price-taker
 - Price-taker aware of price and its real time changes
 - Price-taker aware of (estimated) forward price
 - Transactive
 - Participant in current markets (buy/sell)
 - Participant in forward markets (buy-sell)

Supplier and Consumer Goals

- Suppliers' and consumers' business goals differ
- Transactive approach enables choice
- · Actions for supplier and consumer
- Businesses manage cost of factors of production
 - Respond to what you get
 - Hedge against future increases
 - Smooth variability

End-to-End in More Than One Step

- Pairwise/market interactions
 - Virtual Top Nodes and Virtual End Nodes
 - Bilateral interactions
- End-to-end interaction is a collection of pairwise interactions
- At each level...one size does not fit all
 - Differing requirements
 - Same interaction and interoperation
 - Different market requirements, rules, and scale

Implementing Transactive Energy

- Interactions are Service-Oriented, & allow
 - High scalability
 - High reliability
 - Fault resilience
 - Appropriate security for each interaction
 - Appropriate reliability for each interaction
 - Open entry, open participation

Standards for Transactive Energy

- · Energy product definition and price
 - NIST PAP03 Common Price and Product Definition
 - OASIS Energy Market Information Exchange (EMIX)
 - See Catalog of Standards entry and specification
 - Schedules, prices, currency, factoring of common information
 - Express Power Products today
 - Express transport and effects (congestion, loss, ...)
 - Express natural gas, thermal, ... in the same framework

Standards for Transactive Energy (2)

- NIST PAP09 DR, DER, included Transactive Services
- OASIS Energy Interoperation
 - See References
 - Interoperable DR, DER Services (SOA)
 - Evolved from OpenADR 1 and ISO-RTO Council DR work
 - Base for OpenADR 2 profiles
 - Transactive services (SOA)
 - EiTender-make or tender and offer
 - EiTransaction—accept an offer, creating a transaction
 - EiDelivery-confirm delivery
 - EiQuote—describe a price quote (non-transactable)

Standards for Transactive Energy (3)

- NIST PAP04 Common Schedule
 - Time is critical to energy and facility schedules
- WS-Calendar connects and interoperates with business and personal schedules
 - IETF iCalendar with OASIS WS-Calendar Extensions
 - See References
 - · Schedules, time bindings
 - Compact notation and factoring of common values

Energy Ecologies and Natural Gas

- Transactive energy supports economic and technical choice:
 - Different energy/commodity sources for electricity generation
 - Different energy/commodity sources for production and comfort
 - Local choices, depending on availability of
 - Merchant sources, technology, equipment, ...
- Energy Ecologies provide a decision framework

Energy Ecology at the Node

- Each available input
 - Has a price and product definition (including time)
 - May have EMIX source warrants
- Each possible output
 - Has a price and product definition (including time)
 - May have EMIX source warrants

Conclusions

- One size doesn't fit all
 - Different markets, scale, security, reliability, technologies at each level in the graph
- Micromarkets limit cost, increase flexibility
- Transactive Energy must include transactions
- Market participant business goals differ
- Economic and technology frameworks help decision making (Energy Ecologies)

References (1)

- Price and Product Definition
 - OASIS Energy Market Information Exchange (EMIX)
- · Services and interaction
 - OASIS Energy Interoperation
 - OpenADR2 Profiles of Energy Interoperation
- Schedule
 - WS-Calendar extensions to iCalendar
 - PIM (abstract model) for WS-Calendar in progress

References (2)

- Selected papers (most are linked from <u>here</u>)
 - <u>Automated Transactive Energy</u> (Cazalet Grid-Interop 2011)
 - Energy, Micromarkets, and Microgrids (Cox Grid-Interop 2011)
 - Applying Energy Interoperation and EMIX to DR and Transactive Energy (slides) (Holmberg Grid-Interop 2012)

References (3)

- Energy Ecologies (Cox, Considine, Grid-Interop 2012)
- Microgrids as Fundamental Structure for Smart Grids (Considine, Cox, Cazalet, <u>Grid-Interop 2012</u> Best Paper) (link pending at http://www.gridwiseac.org/ "Historical Proceedings)

